programmation graphique d'un PIC

I) Programmation des PIC

Pour utiliser un PIC il faut tout d'abord le programmer, pour ceci on utilise parmi les divers logiciels le : FLOWCODE qui évoque des symboles graphiques tels que ;

Symbole	Signification	Symbole	Signification	
	Pour énoncer un début ou une fin de programme		Pour définir une <u>répétition</u> (boucle)	
	Pour déclarer une entrée ou affecter une sortie		Pour déclarer une temporisation	
	Pour <u>tester une entrée</u> ou une variable	A	Pour faire <u>un renvoi</u>	

Une fois on a entre les mains l'algorigramme, on doit le saisir sur PC <u>sous FLOWCODE V4.3 demo</u> et passer ensuite par les étapes suivantes ;

- Enregistrer et Compiler : recherche des erreurs de syntaxe et conversion en binaire de l'algorigramme.
- Simuler : vérification du bon fonctionnement et recherche des erreurs d'inattentions
- Transférer : pour loger le programme converti (celui qui porte l'extension « .hex ») dans le PIC depuis le PC (par exemple on utilise le WINPIC).
- Tester le bon fonctionnement physiquement.
 - **Exemple introductif** : réaliser l'Algorigramme de l'équation ET suivante

S = a.b

1) Affectations

Désignation	Broche utilisée
a (entrée)	RA0
b (entrée)	RA1
S (sortie)	RB0

2) Algorigramme avec FLOWCODE (avec ce logiciel on n'utilise pas directement les registres)

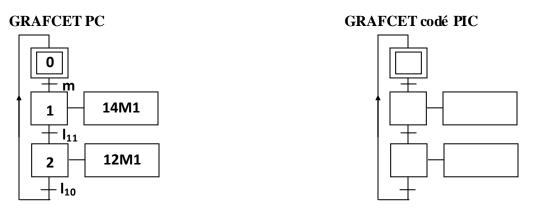
GE Page 1/4

En utilisant la fiche de guidance projetée en classe, passer à la programmation (saisie+sauvegarde+compilation+simulation et transfert) sur PC et tester sur maquette le fonctionnement.

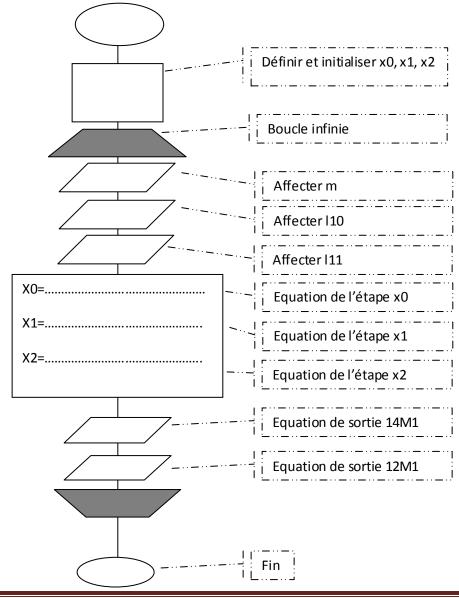
II) Applications

> Application1

Réaliser les activités 7, 8,10 pages 130,136 et140.

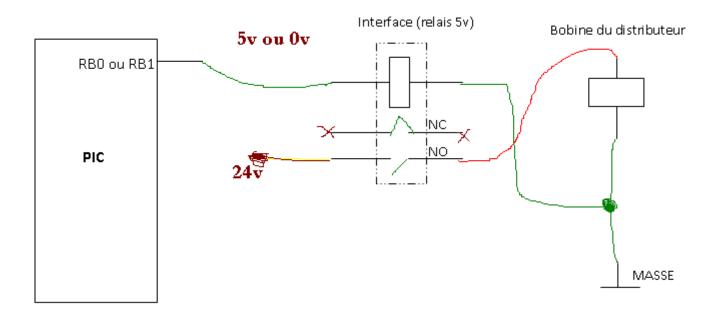

> Application2

Soit le cycle va et vient de la tige d'un vérin décrit par un GRAFCET donnée page 3/4,


1) Compléter le GRAFCET codé PIC en se référent au tableau d'affectations suivants

GE Page 2/4

Etape	Variable définie	Entrée	Pin choisie	Sortie	Pin choisie
0	X0	m	RA0	14M1	RB0
1	X1	l ₁₀	RA1	12M1	RB1
2	X2	l ₁₁	RA2		



2) Traduire ce GRAFCET en Algorigramme.

GE Page 3/4

- 3) Saisir, enregistrer, compiler, simuler et transférer le programme vers le PIC.
- 4) Pour commander réellement le vérin on doit utiliser un distributeur **électro**pneumatique qui nécessite un voltage au delà de 5 v (valeur max en sortie du PIC) d'où on a besoin d'une interface de transition entre faible et moyen voltage ou même haut., voici une ;

Réaliser les activités 11 et 12 pages 142→145, manuel d'activités.

GE Page 4/4