LS	15	novemb	re 1955
L	エン	HOVEIND	

Mathématiques

4^{ème}sc

DEVOIR DE SYNTHESE N° 1

Profs: Karray Nahla-kammoun Fatma- Riadh Ben Maafoud

A.S 2011/2012

DATE 8/12/11

Durée 2h

EXERCICE N°1:5pts

Sur la figure de l'annexe ; est tracée la courbe représentative notée C_f d'une fonction f dérivable et strictement décroissante sur]0, $+\infty$ [. On sait que la courbe C_f admet une tangente parallèle à l'axe des abscisses au point d'abscisse 1. La tangente à la courbe C_f au point B (2, $\frac{3}{2}$) passe par le point D (4, 0).

Par lectures graphiques

- 1) a) déterminer $\lim_{t\to\infty} f$ et $\lim_{0^+} f$
 - b) la fonction f admet-elle des points d'inflexions ? Justifier.
- 2) a) Justifier que la fonction f est une bijection de]0, +∞ [sur un intervalle J que l'on précisera.
 - b) On désigne par f^1 la fonction réciproque de f définie sur J. Déterminer $f^1(\frac{3}{2})$ et $f^1(2)$.
 - c) Vérifier que f^1 est dérivable en $\frac{3}{2}$ et déterminer $(f^1)'(\frac{3}{2})$
 - d) Déterminer sur quel ensemble f¹ est dérivable.
- 3) Construire dans le même repère la courbe représentative de la fonction f¹.
- 4) Soit g la fonction définie sur]0, $+\infty$ [par g(x) = $\frac{1}{x}$ et h la fonction définie sur]0, $+\infty$ [par h(x) =gof(x).
 - a) Vérifier que h est dérivable en 1 et déterminer h'(1).
 - b) Déterminer le sens de variation de h sur]0, +∞ [.

EXERCICE N°2:5pts

On considère la suite (U_n) définie par U₀=1 et pour tout entier naturel n ; U_{n+1} = $\frac{U_n}{1+U_n}$

- 1) Montrer que pour tout entier naturel n ; on a $U_n > 0$.
- 2) a) Montrer que la suite (Un) est décroissante
 - b) Montrer que la suite (Un) est convergente.
 - c) Déterminer $\lim_{n\to+\infty} U_n$.
- 3) Montrer par récurrence que pour tout entier naturel n ; $U_n = \frac{1}{1+n}$.
- 4) On définie la suite (S_n) par S_n= $\sum_{k=0}^{n} U_k$, pour tout entier naturel n.

- a) Montrer que la suite (Sn) est croissante.
- b) Montrer que pour tout entier naturel n, $S_{2n} S_n \ge \frac{n}{2n+1}$; en déduire que la suite (S_n) n'est pas majorée.
- c) Déterminer alors $\lim_{n\to+\infty} S_n$.

EXERCICE N°3:5pts

- 1) Résoudre dans \mathbb{C} l'équation $2z^2 2(1-\cos\theta)z + 1-\cos\theta = 0$; avec $\theta \in]0, \pi[$.
- 2) Ecrire les solutions sous forme exponentielle.
- 3) On pose $f(z) = 2z^3 2(1+i)z^2 + (1+2i)z i$ pour tout $z \in \mathbb{C}$.
 - a) Montrer que l'équation f(z) = 0 admet une solution imaginaire.
 - b) Résoudre alors l'équation f(z) = 0.
- 4) Le plan complexe est rapporté à un repère orthonormé direct (0, u, v), on considère les points M' ϵ M'' d'affixes respectives $z' = \frac{1}{2}(1 \cos\theta + i\sin\theta)$; $z'' = \frac{1}{2}(1 \cos\theta i\sin\theta)$.
- a) Calculer $\left|z'-\frac{1}{2}\right|$ et $\left|z''-\frac{1}{2}\right|$ en déduire que les points M' et M''appartiennent à un même cercle que l'on caractérisera.
- b) Soient les points A, B et C d'affixes respectives $Z_A = i$, $Z_B = 2z'$ et $Z_C = 2z''$. Déterminer θ pour que ABCO soit un parallélogramme.

EXERCICE N°4:5pts

On considère la fonction f définie sur IR par $f(x) = 1 + \frac{x}{\sqrt{1+x^2}}$. C_f la représentation graphique de far un repère orthonormé (0, i, j).

- 1) a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$. Interpréter géométriquement ces limites.
 - b) Calculer f '(x) et montrer que pour tout x dans l'intervalle]1, + ∞ [on a $0 \le f$ '(x) $\le \frac{1}{2\sqrt{2}}$
 - c) Dresser le tableau de variation de f.
 - d) Donner une équation cartésienne de la tangente Δ à la courbe C_f au point I d'abscisse 0.
 - e) Etudier la position relative de C_f et Δ.
- f) Tracer C_f ainsi que la tangente en l.
- g) Montrer que l'équation f(x) = x admet dans l'intervalle] $\frac{3}{2}$, 2[une solution unique α .

- 2) Soit (U_n) la suite définie sur IN par $U_0 > 1$ et pour tout $n \in IN$, $U_{n+1} = f(U_n)$
 - a) Montrer que pour tout $n \in IN$, $U_n \ge 1$
 - b) Montrer que pour tout n \in IN, $\left|U_{n+1}-\alpha\right| \leq \frac{1}{2\sqrt{2}}\left|U_{n}-\alpha\right|$.
 - c) Montrer que pour tout $n \in IN$, $|U_n \alpha| \le (\frac{1}{2\sqrt{2}})^n |U_0 \alpha|$. En déduire $\lim_{n \to +\infty} U_n$.

Feuille annexe

Nom et prénom : Classe :...... Classe

