Lycée -Secondaire - Remada

Année scolaire :2010 -2011

Prof: Ben Ahmed Mohamed

Devoir de synthèse N 1

Classe: 4 eme sciences

Epreuve: mathématiques

Durée: 2h

Exercice N1:QCM (3points)

Pour chacune des questions, une seule des trois propositions est exacte. Indiquera sur sa copie le numéro et la lettre correspondant à la réponse choisie.

Aucune justification ne demandée.

Une réponse juste vaut 0.75 point, une réponse fausse ou l'absence de réponse vaut 0 point.

1/soit f la fonction définie sur [-2,2] par f(x)=x $\sqrt{4-x^2}$ et (ξ) la courbe de f dans un repère orthonormé.

- a) la courbe (ξ) admet une seule tangente horizontale sur [-2,2]
- b) la courbe (ξ) admet au moins deux tangentes horizontales sur [-2,2]
- c) la courbe (ξ) n'admet pas de tangente horizontale sur [-2,2]

 $2/\lim_{x\to 1} \frac{x\sqrt{4-x^2}-\sqrt{3}}{x}$ est egale à :

- b) $\frac{\sqrt{3}}{3}$
- c) $\frac{2\sqrt{3}}{2}$

 $3/Si(U_n)est$ la suite définie sur $\mathbb N$ par $U_n=(\frac{2010}{2011})^n+1$ alors :

- a- $\lim_{n\to +\infty} U_n = 1$ b- $\lim_{n\to +\infty} U_n = +\infty$

a- $\lim_{n\to +\infty} U_n=1$ b- $\lim_{n\to +\infty} U_n=+\infty$ c- $\lim_{n\to +\infty} U_n=0$ 4/ Soit z un nombre complexe d'argument non nul θ .Un argument de $\left(-1+i\sqrt{3}\right)\bar{z}$ est :

- a) $\theta + \frac{2\pi}{3}$
- $c)\frac{\pi}{3}-\theta$
- c) $\frac{2\pi}{3} \theta$

Exercice N2: (6points)

Dans la figure (1) de la page 3/3, $(0,\vec{i},\vec{j})$ est un repère orthonormé directe du plan, φ est le cercle de centre O et de rayon 2 et B est le point d'affixe Z_B

1/a) Déterminer par un lecture graphique le module et un argument de \mathbb{Z}_B

b)En déduire que $z_B = -\sqrt{3} + i$

2/a) placer sur la figure les points A et C d'affixes respectives $z_A = \sqrt{3} + i$ et $z_C = 2i$

b)montrer que le quadrilatère OACB est un losange.

3/a) Résoudre dans \mathbb{C} l'équation (E): $z^2 - 2iz - 4 = 0$

b) Mettre sous forme exponentielle les solutions de (E).

 $4/\text{Soit P}(z) = z^3 - 4iz^2 - 8z + 8i$

a) Vérifier que P(2i) = 0

b) Déterminer les nombres complexes m et p tels que $P(z) = (z-2i)(z^2 + mz + p)$

c) Résoudre alors dans \mathbb{C} l'équation P(z) = 0

Exercice N3:(5points)

Dans l'annexe ci-joint (figure 2) page 3/3 on représenté dans un repère orthonormé $(O, \overrightarrow{U}, \overrightarrow{V})$ la courbe (ξ) de la fonction f définie sur $\left[-\frac{1}{2}, \frac{1}{2}\right]$ par $f(x) = 1 + \sin(\pi x)$

- (ξ) admet deux demi-tangentes horizontales aux points d'abscisses $-\frac{1}{2}$ et $\frac{1}{2}$
- La tangente T à (ξ) au point d'abscisse 0 passe par le point $A(1, 1+\pi)$

I. En utilisant le graphique

- 1/a) Déterminer $f(\frac{1}{2})$, $f(-\frac{1}{2})$, f(0) et $(f)'_g(\frac{1}{2})$
- b) Montrer que f réalise une bijection de $\left[-\frac{1}{2},\frac{1}{2}\right]$ sur [0,2], on note f⁻¹ la fonction réciproque de f et (ξ') la courbe représentative de f⁻¹ dans $(O,\overrightarrow{U},\overrightarrow{V})$
- c) Tracer le courbe (ξ') et les demi tangentes à (ξ') aux points d'abssices 0 et 2
- 2/ Dresser le tableau de variation de f^{-1}
- II. 1/. Déterminer f'(0), $f^{-1}(1)$ et $(f^{-1})'(1)$
 - 2/a) Montrer que f^{-1} est dérivable sur]0,2[
 - b)Montrer que $(f^{-1})'(x) = \frac{1}{\pi\sqrt{2x-x^2}}$
 - c) Etudier la dérivabilité de f^{-1} à droite en 0 et à gauche en 2.

Exercice N4:(6points)

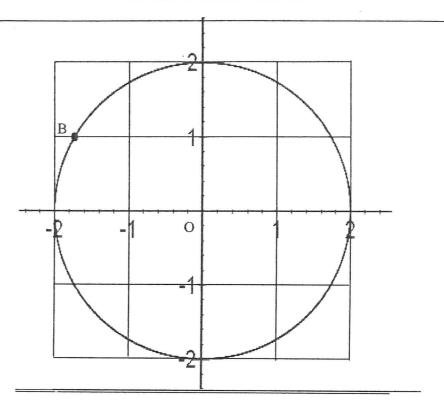
- A/ Soit f la fonction définie sur]1, $+\infty$ [par : $f(x) = \frac{1}{x-1} \sqrt{x}$
 - 1) Dresser le tableau de variation de f
 - 2) Montrer que l'équation f(x) = 0 admet dans IR une unique solution $\propto et$ que $\frac{3}{2} < \propto < 2$
- B/ Soit g la fonction définie sur par[1, $+\infty$ [: $g(x) = 1 + \frac{1}{\sqrt{x}}$
 - 1/ Montrer que l'équation g(x) = x équivaut à f(x) = 0
 - 2/a) Dresser le tableau de variation de g
 - b) Déterminer g ([1,2])
 - 3/a)Montrer que pour tout x de $[1, +\infty[:|g'(x)| \le \frac{1}{2}]$
 - b)En déduire que pour tout x de $[1, +\infty[: |g(x)-\alpha| \le \frac{1}{2}|x-\alpha|]$
 - 4/ Soit la suite réelle (Un) définie sur IN par : $\begin{cases} U_0 = \frac{3}{2} \\ U_{n+1} = g(U_n) \end{cases}$
 - a) Montrer que pour tout n de IN $,1 < U_n < 2$
 - b) Montrer que ,pour tout n de IN, $|U_{n+1} \alpha| \le \frac{1}{2} |U_n \alpha|$
 - c) En déduire que $|U_n - \infty| \le (\frac{1}{2})^n \left| \frac{3}{2} - \infty \right|$
 - d) En déduire que (Un) est converge et déterminer sa limite.

Non et prénom :.....

Exercice N°2

Figure N° 1:

Annexe à rendre avec la copie



Exercice N°4 :(figure2)

